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A B S T R A C T

Soil respiration (Rs) is a combination of autotrophic and heterotrophic respiration, but it is often modeled

as a single efflux process, influenced by environmental variables similarly across all time scales.

Continued progress in understanding sources of variation in soil CO2 efflux will require development of

Rs models that incorporate environmental influences at multiple time scales. Coherence analysis, which

requires high temporal frequency data on Rs and related environmental variables, permits examination

of covariation between Rs and the factors that influence it at varying temporal frequencies, thus isolating

the factors important at each time scale. Automated Rs measurements, along with air, soil temperature

and moisture were collected at half hour intervals at a temperate forest at Harvard Forest, MA in 2003

and a boreal transition forest at the Howland Forest, ME in 2005. As in other temperate and boreal

forests, seasonal variation in Rs was strongly correlated with soil temperature. The organic and mineral

layer water contents were significantly related to Rs at synoptic time scales of 2–3 days to weeks,

representing the wetting and drying of the soils as weather patterns move across the region. Post-

wetting pulses of Rs were correlated with the amount of precipitation and the magnitude of the change

from pre-wet-up moisture content to peak moisture content of the organic horizon during the

precipitation events. Although soil temperature at 8–10 cm depth and Rs showed strong coherence at a

24-h interval, calculated diel Q10 values for Rs were unreasonably high (6–74) during all months for the

evergreen forest and during the growing season for the deciduous forest, suggesting that other factors

that covary with soil temperature, such as canopy assimilatory processes, may also influence the diel

amplitude of Rs. Lower diel Q10 values were obtained based on soil temperature measured at shallower

depths or with air temperature, but the fit was poorer and a lag was needed to improve the fit (peak Rs

followed peak air temperature by several hours), suggesting a role for delayed substrate supply from

aboveground processes to affect diel patterns of Rs. High frequency automated Rs datasets afford the

opportunity to disentangle the temporal scales at which environmental factors, such as seasonal

temperature and phenology, synoptic weather events and soil moisture, and diel variation in

temperature and photosynthesis, affect soil respiration processes.

� 2009 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.e lsev ier .com/ locate /agr formet
1. Introduction

The increasing concentrations of atmospheric carbon dioxide
and other greenhouse gases are primary contributors to observed
increases in global temperature. These changes are likely to alter
primary productivity, autotrophic respiration, and heterotrophic
respiration, and the net carbon balance of ecosystems will depend
on how each of these processes responds to changes in climate
(Denman et al., 2007). Soil respiration (Rs), a combination of
autotrophic (root respiration, Rroot) and heterotrophic (microbial
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respiration, Rmicro) respiration, is a major carbon flux from the
terrestrial biosphere to the atmosphere. Rs is primarily correlated
to temperature and precipitation (via soil moisture), although
there is also a growing recognition that primary productivity and
substrate supply (both in terms of amount and quality) are critical
drivers of Rs (Davidson et al., 2006a).

A number of studies have examined the relationship between
temperature and Rs on diel and seasonal scales (Xu and Qi, 2001;
Irvine and Law, 2002; Janssens and Pilegaard, 2003; Yuste et al.,
2004; Gu et al., 2008). Empirical models of Rs are expressed as a
scalar function of temperature, often represented by an exponen-
tial Q10 (van’t Hoff) value (the scalar multiple by which Rs increases
when temperature increases by 10 8C). However, Rs is a complex
process, combining Rmicro and Rroot, each of which typically
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emanates from a variety of species and which may respond
differently to temperature and other covarying environmental
factors such as soil water content and substrate availability (Gu
et al., 2008). Responses of Rmicro and Rroot are also likely to differ at
diel and seasonal time scales. Hence deriving one Q10 function
representative of Rs on all time scales is overly simplistic.

In past work, when the components of Rs have been
distinguished, diel responses of Rmicro were correlated with soil
temperature but Rroot was decoupled from soil temperature and
significantly related to plant phenology (Yuste et al., 2004; Tang
et al., 2005a; Liu et al., 2006). Rroot has been found to derive its
carbon source from stored carbohydrates in early spring and recent
photosynthate in late spring (Cisneros-Dozal et al., 2006), likely
indicating new root growth in late spring. As such, diel trends in Rs

during this period maybe more strongly affected by aboveground
processes than soil temperature. Significant relationships have
been demonstrated between Rs and leaf area index (LAI) and
photosynthetically active radiation (PAR), both indicators of
photosynthetic activity (Yuste et al., 2004, Liu et al., 2006).
However, the time required for recently assimilated carbon to
travel from leaves to roots is not well known, and studies have
found both a time lag and no time lag between aboveground
processes and inferred Rroot (Davidson and Holbrook, 2009; Tang
et al., 2005a; Lui et al., 2006; Gaumont-Guay et al., 2008).

The response of Rs to soil moisture is more complex and often
confounded with its relationship to temperature. Soils of many
temperate forests tend to dry out as evapotranspiration exceeds
precipitation during summer months, thus confounding the effects
of temperature on Rs (Davidson et al., 1998). Under drought
conditions, water stress significantly decreases rates of Rs over
weeks and months as soils gradually dry down (Savage and
Davidson, 2001; Borken et al., 2006), primarily because of a
decrease in Rmicro (Cisneros-Dozal et al., 2006).

Increases in soil moisture generally result in increased Rs due to a
combination of reduced microbial water stress, release of substrates
from turnover of microbial biomass, and greater mobility of available
substrate through soil water films (Birch, 1958; Bottner, 1985; Kieft
et al., 1987; Xu et al., 2004). This response has been observed to be
rapid (minutes to hours) but variable in duration (influence lasting
hours to days) and magnitude (Irvine and Law, 2002; Borken et al.,
2003). The magnitude and timing of pulse events can significantly
influence the annual carbon budget, accounting for up to 11% of the
observed seasonal flux (Lee et al., 2004; Tang et al., 2005b). The
proportion of Rs derived from either Rroot or Rmicro differs under
differing moisture conditions (Borken et al., 2006). Cisneros-Dozal
et al. (2006) found that decomposition of leaf litter, an Rmicro

component of Rs, varied with moisture status, and changes in leaf
litter moisture primarily drove the variability in total Rs fluxes,
accounting for 1% under dry conditions and up to 42% of total Rs

under wet conditions.
The objective of this study is to examine the response of Rs to

changes in temperature and moisture at seasonal, diel and synoptic
scales. Using high temporal frequency measurements of Rs,
temperature, and moisture, we differentiate the effects of climatic
variables at each temporal scale.

2. Methods

2.1. Study site

Rs was measured at the Harvard Forest near Petersham,
Massachusetts USA (42832N, 72811W), and at the Howland Forest,
near Howland Maine, USA (45812N, 68844W). Data presented here
for Harvard Forest were collected from May 17th through
November 11th, 2003, from a well drained mixed hardwood
forest, approximately 70 years old. The dominant tree species is red
oak. Soils are classified as Canton fine sandy loam, Typic
Distrochrepts. Due to agricultural use in the 19th century, the
upper mineral soil is partially disturbed. The mean annual
temperature is +8.5 8C and the mean annual precipitation is
1050 mm. The precipitation total for 2003 was 1311 mm,
approximately 25% greater than the annual average. See Compton
and Boone (2000) and Savage and Davidson (2001) for further
descriptions.

Data presented here for Howland were collected from May 4th
through November 3rd, 2005, and are from a mature boreal
transition forest dominated by red spruce and eastern hemlock
stands that are at least 160-year old. The soils have never been
cultivated and are classified as Skerry fine sandy loam, Aquic
Haplorthods. The mean annual temperature is +5.5 8C, and the
mean annual precipitation is 1000 mm. The precipitation total for
2005 was 1281 mm, 28% greater than the annual average. See
Fernandez et al. (1993), Savage and Davidson (2001) and Hollinger
et al. (2004) for further descriptions.

2.2. Automated measurements of Rs

The same automated Rs system and the same sampling
strategies and protocols were used for both Harvard and Howland
forests. Automated measurements of Rs were made at six chambers
each of which was sampled once per half hour. For a description of
the automated Rs system see Savage and Davidson (2003). Briefly,
each chamber was active for a 5-min period over which time a
vented chambertop would close onto the collar and a pump would
circulate air from inside the chamber headspace to an infrared gas
analyzer (IRGA-Licor 6252). A Campbell CR10X datalogger
recorded the change in chamber headspace CO2 concentration.
Air temperature and pressure were used to correct for the number
of moles of CO2 in air. A linear regression was preformed on the
increasing chamber headspace concentration to determine a flux
rate. About 50,000 flux measurements were obtained for each site.
A series of protocols designed to efficiently isolate suspect fluxes
was utilized to analyze the data for quality (for a complete
description of protocols see Savage et al., 2008). Following the data
quality procedures, the final dataset for Harvard consisted of
39,876 Rs measurements and 43,673 for Howland.

2.3. Soil moisture, temperature and organic layer water content

At the Harvard Forest, soil pits were dug to a depth of 80 cm and
Campbell Scientific Water Content Reflectometry probes (CS615)
were installed at 4.5, 14, 36 and 61 cm. The 4.5 cm volumetric soil
moisture (VSM, cm3 H2O cm�3 soil, Campbell Scientific supplied
calibration equation) readings were used for subsequent analysis.
Within this same pit, soil temperature was measured (type T-
thermocouple) at 4.5, 8.5, 14 and 36 cm. Thirty-six DC-half bridges
(for a description of DC-half bridge sensors see Borken et al., 2003)
were used to measure the gravimetric water content (g H2O g�1 -
dry mass) of the organic layer. Briefly, the half bridge sensors are
pieces of basswood (1.59 mm thick and 9 cm2), which mimic the
wetting and drying of the leaf litter. Soil temperature, organic layer
water content (OWC) and mineral layer VMS were measured at half
hourly intervals and data were collected and stored on a Campbell
Scientific CR10X datalogger.

At Howland, soil temperature was measured at 5.0, 10.0 and
20.0 depth using thermistor probes. These data we collected and
maintained by the Agricultural Research Service (ARS). Data were
available from ftp://130.111.198.38/DataArchives. OWC was mea-
sured using 13 half bridge sensors inserted into the leaf litter layer,
which consists primarily of conifer needles at Howland Forest. The
VSM at the organic–mineral A interface (approximately 5–10 cm
depth) was measured using Campbell Scientific Water Content

ftp://130.111.198.38/DataArchives
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Reflectometry probes (CS616). Sampling frequency was half hourly
and data were collected and stored on a Campbell Scientific CR10X.

2.4. Meteorological measurements

At Harvard, air temperature and precipitation, were measured
at hourly intervals by the Harvard Forest meteorological station
(http://harvardforest.fas.harvard.edu/data/p00/hf001/
hf001.html). This meteorological station is located approximately
1.6 km from the study site. Photosynthetically active radiation
(PAR) was measured above canopy at an eddy covariance tower
located within 300 m of our site (Steve Wofsy and William Munger,
Harvard University, Urbanski et al., 2007, ftp://ftp.as.harvard.edu/
pub/nigec/HU_Wofsy/hf_data/).

At Howland, air temperature was measured concurrently with
the automated Rs system. PAR values were collected above canopy
from the main tower (ftp://epg-ftp.umaine.edu/).

2.5. Statistical analysis

Half hourly averages of the six automated Rs chambers were
used for all modeling. Systat Version 10 and Microsoft Excel were
used for all statistical analysis.

The model form used for the Rs and temperature relationship is
the exponential Q10 function (Eq. (1))

Rs ¼ Rref Q
ðTs�10Þ=10
10 (1)

Models used to subsequently fit observed Rs data to tempera-
ture and moisture parameters (Eqs. (2) and (3)) are listed below.
Discussion of model fit follows in Section 3.5.

Rs ¼ ðRref Q
ðTs�10Þ=10
10 ÞbðOWC-opt�OWCÞ2

1 (2)

Rs ¼ ðRref Q
ðTs�10Þ=10
10 ÞbðOWC-opt�OWCÞ2

1 þ aTs sin
2pTd

2400

� �
þ c

� �
(3)

where Ts is half hourly soil temperature (8C), Rref is Rs at 10 8C
(mg C m�2 h�1), Q10 is a unitless expression of the increase in Rs for
each increase in 10 8C. OWC is organic layer water content
(g H2O g�1 dry weight), b1 modifies the shape of the quadratic
fit, and OWC-opt is the optimal water content (g H2O g dry
weight�1). Ts is mean daily soil temperature (8C, 8.5 cm for
Harvard Forest and 10 cm for Howland Forest), a modifies the
amplitude of the waveform, c modifies the phase of the waveform
and Td is time of day in military time.

2.6. Model fitting procedures

Rs and temperature model parameters are commonly fitted
using an ordinary least squares (OLS) regression. With OLS the loss
function minimizes the sum of the squared deviations. However
using this method, outliers exert considerable and perhaps undue
weight when fitting model parameters.

OLS and maximum likelihood optimization yield the same
parameters when data errors are normally distributed and of
constant variance (Press et al., 1993). Rs data error distributions for
Harvard and Howland follow a double exponential, Laplace
distribution, the variance of which increases with the Rs flux,
and hence meet neither of the OLS assumptions (see Savage et al.,
2008 for more detail). When errors violate the assumptions of a
normal distribution and constant variance, then model parameters
should be estimated using a maximum likelihood method.
According to Press et al. (1993) this is achieved by minimizing a
cost function (V), which is the equal to the sum, over all
observations, of the absolute value of the data-model mismatch,
weighted by the reciprocal of standard deviation of the estimated
data error (WAD), Eq. (4);

V ¼
Xn

i¼1

jyi � ypredj
sðdiÞ (4)

where yi is the observed flux (mg C m�2 h�1), ypred is the predicted
flux (mg C m�2 h�1), and s(di) is a weighting function. The
weighting function is based on the standard deviation of each
observation measurement error (see Savage et al., 2008 for more
detail). Briefly, following procedures proposed by Hollinger and
Richardson (2005), a ‘‘paired observations’’ approach was used to
infer the statistical properties of the random error, e, from the
difference, jRs,t=0 � Rs,t=24j/H(2), between average half hourly
measurements (across n = 6 chambers) made exactly 24 h apart,
and where no precipitation event occurred during that 24 h period
nor within 48 h prior. The random error was characterized by an
estimate of its standard deviation, and is used as the weighting
function s(di) Eq. (5);

sðdiÞ ¼ 0:85þ 0:07Rs (5)

This error equation requires an initial predicted Rs

(mg C m�2 h�1) measurement, which was determined from the
predicted Rs from the Q10 function in Fig. 1 (OLS fit) for both
Harvard and Howland forests. Using the predicted Rs (rather than
the measured Rs) allows for an uncertainty estimate that is
independent of the actual error in the measured flux.

Model parameters were then optimized by minimizing Eq. (4)
using the Gauss–Newton method in Systat 10. As can be seen from
Fig. 1a, there is no difference in model fit between the OLS fit and
WAD at the Harvard forests, however for Howland Fig. 1b, there is a
difference between model fits at the warmer soil temperature
range. All models used for subsequent analysis are fit using the
WAD method.

Since the WAD method does not produce an R2 value, the
method developed by Richardson et al., 2006a to derive a Figure of
Merit R2 (FMR2) value (for a detailed description of the method see
Richardson et al., 2006b) was used. Briefly, a within sample null
model was produced using Eq (4), (Vo), where ypred equals the
mean Rs value for the dataset. The FMR2 is then equal to 1 � (V/
Vo). The FMR2 value from the WAD model fitting procedure can be
considered similar to the multiple correlation coefficient r2 from
the OLS fitting procedure.

The 95% confidence intervals for model parameters which were
fit using the WAD method, were calculated using 100 bootstrap
parameter estimates (using SYSTAT 10.0) for each model (Eqs. (1)–
(3)). The standard error of those 100 estimated parameters was
used to determine the 95% confidence interval.

To determine if a statistically significant decrease in the V value
occurred from one model to the next, the V value for 100 of the
bootstrap parameters was calculated. These values were sorted
and the 95th value was used to estimate the 95% confidence
interval. Cost function value lower than the 95% confidence
interval is considered a significant decrease in the V function value
from one model to the next.

2.7. Coherence analysis

Coherence between two time series is akin to a correlation
coefficient in the frequency domain, and is calculated as,

CohxyðlÞ ¼
j f xyðlÞj

2

½ f xxðlÞ f yyðlÞ�

where fxx(l) and fyy(l) are the power spectra of series x and y, and
fxy(l) is the cospectrum of x and y.

http://harvardforest.fas.harvard.edu/data/p00/hf001/hf001.html
http://harvardforest.fas.harvard.edu/data/p00/hf001/hf001.html
ftp://ftp.as.harvard.edu/pub/nigec/HU_Wofsy/hf_data/
ftp://ftp.as.harvard.edu/pub/nigec/HU_Wofsy/hf_data/
ftp://epg-ftp.umaine.edu/


Fig. 2. (a and f) mean 1/2 hourly Rs rates, (b and c) mean 1/2 hourly soil temperature at 8.5 cm depth Harvard and 10 cm depth Howland, (c and h) mean 1/2 hourly organic

layer water content (d and i) mean 1/2 hourly volumetric soil moisture content, dashed line indicated drought level (e and j) hourly precipitation.

Fig. 1. (a) Harvard Forest temperature model Eq. (1), solid gray line ordinary least squares (OLS) fit, Rref = 90.8, Q10 = 4.2; dashed line weighted absolute deviations (WAD) fit,

Rref = 91.3, Q10 = 4.2, lines overlap. (b) Howland Forest temperature model Eq. (1), solid line OLS fit, Rref = 110.7, Q10 = 4.1, dashed gray line WAD fit, Rref = 108.8, Q10 = 4.0.
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Fig. 3. Analysis of the coherence between Rs and several environmental factors,

including soil temperature and moisture conditions in the organic layer and the

mineral A soil, at varying time scales. VSM, volumetric soil moisture. Solid filled

symbols indicated >95% significance. Harvard Forest data are presented in the

upper panel; Howland Forest data in the lower panel.

Table 1
Results from fitting Eq. (1) using different soil temperature depths and air

temperature. Half widths of 95% confidence intervals presented in (italics). FMR2

defined in Section 2.7.

Rref Q10 FMR2

Harvard Forest

Air temperature 109.4 (0.10) 1.8 (0.002) 0.47

Soil temperature at 4.5 cm 94.2 (0.08) 3.7 (0.006) 0.71

Soil temperature at 8.5 cm 91.3 (0.08) 4.2 (0.008) 0.71

Soil temperature at 12 cm 89.5 (0.08) 4.2 (0.006) 0.70

Soil temperature at 36 cm 90.5 (0.16) 5.6 (0.02) 0.51

Howland Forest

Air temperature 98.6 (0.13) 1.6 (0.001) 0.36

Soil temperature at 5 cm 104.7 (0.06) 3.6 (0.005) 0.69

Soil temperature at 10 cm 108.7 (0.08) 4.0 (0.007) 0.69

Soil temperature at 20 cm 110.7 (0.08) 4.3 (0.01) 0.64

Soil temperature at 50 cm 127.1 (0.11) 4.1 (0.01) 0.52
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Coherence values range from 0 (absence of any linear
correlation) to 1 (perfect correlation). Time series may be coherent
at some frequencies but not at others.

Using a computer program developed by Carter and Ferrie
(1979) the coherence between environmental variables and Rs

measurements was examined. Average Rs, temperature and
moisture variables over 6 h periods were calculated to produce
a continuous dataset of 512 points between the period May 18–
September 22, 2003 (127 days) for Harvard, and from May 4 –
September 9, 2005 (127 days) for Howland, with Rs as one time
series, and either soil temperature, VSM at 4.5 cm depth or OWC as
the other time series.

To determine the coherence value significance level at each
frequency, a Monte Carlo technique was used in which 100
artificial Rs datasets, based on a normal distribution and defined by
the mean and standard deviation of the entire observed Rs dataset,
were produced. The observed soil temperature was used as the
independent variable for each of the 100 artificial Rs datasets for
this analysis of significance. The coherence values were calculated
for each of the 100 artificial datasets. Each artificial dataset was
sorted with the 95th-percentile coherence values used as a
threshold value of significance.

3. Results and discussion

Rs showed a strong seasonal trend, with increasing respiration
as soil temperatures warm into the summer months, peaking in
August, and decreasing as temperatures cool in the fall at both
Harvard and Howland forests (Fig. 2a, b, f, g). Rs rates increased
following precipitation events, but the magnitude and duration of
those pulses varied throughout the season (Fig. 2a, c, e, f, h, j).
Previous studies at these sites have demonstrated that soil
moisture usually declines during the mid to late summer, with
drought conditions identified when the mineral VSM decreases
below 0.12 g H2O g�1 soil (Savage et al., 2001). However, 2003 at
the Harvard Forest and 2005 at the Howland Forest were unusually
wet years, (see Section 2.1) and soil moisture in the mineral layer
never fell below 0.12 g H2O g�1 soil.

3.1. Coherence analysis

Coherence analysis examines the correlations between
factors that influence Rs at varying temporal frequencies,
enabling the isolation of those factors at time scales of interest.
At both Harvard and Howland forests, Rs rates showed a
significant relationship with soil temperature at a diel and
seasonal frequency (Fig. 3). For synoptic weather patterns, Rs

showed a significant relationship with OWC and VSM at
approximately 2 day and 1–2 week periods, at Harvard Forest.
At Howland, Rs showed a significant relationship to VSM at 4–5
days and OWC at approximately 2 and 4–7 days. The following
sections address each of these temporal scales.

3.2. Seasonal scale

Air temperature and soil temperature at 4.5, 8.5, and 12 cm for
the Harvard Forest and at 5, 10 and 20 cm for the Howland Forest
were used to derive seasonal temperature dependence models
(Eq. (1), Table 1). The figure of merit, FMR2 (defined in Section 2.7)
for the Harvard Forest model fit was best with temperature
measured at 4.5 and 8.5 cm depths (FMR2 of 0.71). For the
Howland Forest the best fits were also with temperatures
measured at 5 and 10 cm depths, and the FMR2 was 0.69. Hence,
for both forests, the soil temperature in the upper organic and
mineral A horizons explains a large portion of the observed
seasonal variation in Rs.
3.3. Diel amplitude and pattern

The diel Q10 (using soil temperature at 8.5 cm for Harvard Forest
and 10 cm at Howland Forest) was calculated (Eq. (1)) for periods
of several days within each season that were not influenced by
precipitation (either wetting up or drying down) and that
contained no missing Rs measurements per day (n = 48 measure-
ments per day). The calculated diel Q10 values were unreasonably
high (from 5 to 74) for all months at the evergreen Howland Forest
(Fig. 4a) and were also high (6–11) at the deciduous Harvard Forest
(Fig. 4b) during months when leaves were present. High Q10 values
(>3) have been interpreted as an indicator that factors other than
temperature, but that covary with temperature, also contribute to
temporal variation in soil respiration (Davidson et al., 2006a). The



Fig. 4. Diel Q10 fits (Eq. (1)) of sections of data from Harvard and Howland Forest. Q10

values follow the legend symbols for day of year (DOY). All models are significant

p < 0.0001. Thin dark gray line is the Q10 (4.5 Harvard Forest, 3.8 Howland Forest) fit

using the above sets of Rs and soil temperature data.
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seasonal Q10 of about four reported in this study (Fig. 1) suggests
that the phenology of seasonal C inputs to the soil may covary with
temperature. Similarly, the very high diel Q10 values (>6) when a
canopy was present indicate that processes other than the direct
effects of varying soil temperature must be influencing the diel
amplitude of Rs during seasons when photosynthesis occurs. The
most likely explanation is that substrate supply for root respiration
probably covaries with both seasonal and diel soil temperature
Fig. 5. Diel average Rs. Thick black line is observed diel average. Closed circles are predicte

are predicted using soil temperature at 8.5 cm (Harvard) and 10.0 cm (Howland). Open

from Table 1.
variation and contributes to the seasonal and diel amplitudes.
Gaumont-Guay et al. (2006) also reported that hourly Rs peaked 3–
5 h after soil temperature (measured at 2 cm depth) peaked in a
boreal aspen forest, and they similarly inferred a delayed response
to aboveground processes. However, in contrast to our results, they
reported that diel Q10 values were lower than seasonal Q10 values,
probably because soil moisture was a strong limiting factor during
the middle and late parts of the growing season in their boreal
forest, which dampened the observed response of Rs to diel
variation in soil temperature.

Because the depth of soil temperature measurement clearly
affects the calculated Q10, we also derived diel temperature
functions using measurements at shallower soil depths and air
temperature (Table 1). We then compared predicted Rs for each
temperature function with hourly average estimates of observed Rs

(Fig. 5). At both sites, predicted Rs based on air temperature greatly
over-predicted observed diel amplitudes, and the estimated peak
preceded observed Rs peaks by several hours. The predicted Rs

using the 4.5–5 cm depths and observed Rs showed similar diel
amplitudes, but the estimated peak Rs preceded observed peak Rs

by 3–4 h. The predicted diel amplitude of Rs from the 8.5–10 cm
temperature function under-predicts observed Rs amplitude, but
the peaks generally occurred at the same times. In summary, using
temperatures measured at 4–5 cm depths, the correct diel
amplitude can be simulated, but with the wrong timing of the
peak, whereas using temperatures measured at 8–10 cm provides
a better fit of the temporal pattern but under-predicts the
amplitude.

Our previous estimates of CO2 production as a function of depth
within the Harvard Forest soil profile (Davidson et al., 2006c)
indicate that only about one-third of the CO2 production occurs in
the B and C horizons, which means that deep soil CO2 production is
unlikely to explain a large delayed peak in soil CO2 efflux. A more
likely explanation is that soil temperature measured at 4.5–5 cm
depth, which is at or below where most of the CO2 is produced,
provides a good estimate of diel variation of total soil CO2

production, but that a lag of several hours is needed to account for
the time necessary for photosynthate and/or a plant signal to move
down the phloem to roots to affect the root respiration component
of Rs. However, knowledge of probable time lags between above
and belowground processes is virtually nonexistent for most
plants and especially for forest ecosystems (Davidson and
Holbrook, 2009; Thompson and Holbrook, 2004; Gaumont-Guay
et al., 2008).
d using soil temperate at 4.5 (Harvard) and 5.0 (Howland) cm depth. Closed squares

triangles are predicted using air temperature. Q10 values for each predicted model



Fig. 6. Rs response to wet-up events. VSM is volumetric soil moisture.

Fig. 7. Rs measurements corresponding to wet-up event. Solid circles are observed

Rs, solid thick black line is predicted ‘‘dry’’ Rs. Gray shaded area denotes Rs response

to a wet-up event. A wet-up event begins with the start of precipitation and ends

when leaf litter water content dips below 1 g H2O g�1 dry weight (dashed line).

Arrows shows four examples of the start and end of wet-up responses.
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The diel pattern of Rs also has implications for calculations of
total ecosystem respiration (TER). In studies of net ecosystem
exchange of CO2 using tower based eddy covariance, TER can be
measured only at night, when photosynthesis is not active. To
calculate daytime TER, a Q10 function derived from nighttime
measurements of TER and air or soil temperature is often used to
predict daytime TER values based on daytime air or soil
temperatures. Hence, daytime TER is assumed to exceed measured
nighttime TER. However, our measurements of Rs at both Harvard
and Howland forests demonstrate that Rs peaked after sunset, after
both air and soil temperatures begin to decline. Observed seasonal
average nighttime Rs values exceeded daytime values at the
Harvard Forest (nighttime mean 184, and STErr 1.7, daytime mean
181 and STErr 1.3 mg C m�2 h�1) and particularly at Howland
(nighttime mean 164, and STErr 1.31, daytime mean 147 and STErr
0.92 mg C m�2 h�1). Because Rs is 60–80% of TER in these forests
(Davidson et al., 2006b; Goulden et al., 1996), TER may be as high
or higher after sunset than during the day and is unlikely to be
accurately predicted by a Q10 function based on daytime air
temperatures. Although the differences between night and day
estimates of Rs shown here are small, they are in the opposite
direction from the assumption that daytime TER should be higher
than nighttime TER based on adjusting measured nighttime TER
with a temperature function to estimate daytime TER. The
cumulative effect of even modest over-prediction of daily daytime
TER could significantly affect estimates of annual TER and gross
primary productivity (Gaumont-Guay et al., 2006).

3.4. Synoptic scale

The coherence analysis showed a significant relationship
between Rs and OWC and VSM content at 2 day and 1–2 week
intervals, consistent with the movement of synoptic weather
patterns across the area, causing the litter and soil layers to wet
and dry. Rs was responsive to even small events that wetted only
the organic layer (Fig. 6a and c Harvard). As the litter layer dried, Rs

began to decrease (Fig. 6a and c). These wet-up responses to
precipitation events are also evident at Howland, although they are
not as dramatic as at Harvard. Pulse release of CO2 efflux during
and following precipitation events has been observed in many
studies (Borken et al., 2003; Xu et al., 2004; Tang et al., 2005b;
Cisneros-Dozal et al., 2006). Desiccation stress causes some
microbial death, which then provides readily available substrate
that the remaining living microbes can efficiently and quickly
utilize once it becomes mobile with increased water content, often
called the Birch effect, (Birch, 1958; Bottner, 1985; Kieft et al.,
1987).

To further investigate the link between wetting and drying
patterns, the relationship between Rs and wet-up events was
examined at Harvard. To establish a baseline Rs which is not
influenced by precipitation, data were filtered for only observed Rs

measured >48 h from a precipitation event. Using this ‘‘dry Rs’’

dataset, a Q10 model of dry Rs and soil temperature at 10 cm depth
(Rref = 81.69 mg C m�2 h�1, Q10 = 3.6) was developed. Dry Rs for
DOY 137–315 estimated from this Q10 function were used as the
baseline Rs (Fig. 7, solid black line). Visual inspection of the data
both pre and post precipitation events showed that once OWC

content dropped below �1 g H2O g�1 dry weight, Rs declined
steadily. Therefore, a precipitation event was defined as the period
from the beginning of rainfall until the point when OWC fell below
1 g H2O g�1 dry weight. Fig. 7 shows an example section of the
dataset to demonstrate this method. The light gray areas represent
the proportion of the flux estimated to have been stimulated by
precipitation, which is the summed difference between observed
Rs and the baseline dry Rs. The total Rs for the 20 measured events
at the Harvard Forest was 452 g C m�2. The sum of the difference
between observed Rs and dry Rs for these 20 periods totaled
55 g C m�2, representing an increase of 12% in Rs due to the effects
of the precipitation during the measurement period (55 g C m�2/
452 g C m�2) and 8% of the total seasonal flux (55 g C m�2 total flux
due to wet-up response/703 g C m�2 total seasonal flux).

The increase in Rs attributed to each precipitation event was
significantly correlated to the total precipitation during the events
and to the change in OWC from pre-wetting to the maximum OWC

during the event (Fig. 8). The magnitude of the response of Rs to a
precipitation event was greatest when the OWC was very dry prior



Fig. 8. Relationships between the post-wetting response of Rs and the total amount

of respiration and the change in water content of the organic horizon. The

relationship between wet-up SR and total precipitation (R2 = 0.36, p = 0.005), and

wet-up SR and DOWC (R2 = 0.12, p = 0.07). For the above fitted surface is: Wet-up

Rs = 1524 �Dorganic H2O + 39 � P, R2 = 0.45, p = 0.001, D in OWC is defined as the

difference between OWC before the precipitation event and the maximum OWC

during the precipitation event.
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to wet-up. Large precipitation events yielded a bigger pulse
because they sustained elevated OWC longer. Hence, total
precipitation and the change in OWC were found to be good
predictors of the magnitude of the wet-up response.

3.5. Integrating empirical models at seasonal, synoptic and diel scales

Based on the identification of three important temporal scales
of variation in the coherence analysis (Fig. 3), empirical models for
Rs were developed using environmental variables representing
processes at each temporal scale. First, the seasonal Q10 functions
(Eq. (1)) based on soil temperature measured in the A horizon
explain most of the variation in observed Rs (Table 2). This seasonal
relationship with soil temperature is likely a combination of the
influence of both Rroot and Rmicro. As soil temperatures warm from
spring to summer, both microbial activity and primary productiv-
ity increase with soil temperature, and then fall off in autumn
when temperatures begin to decline.

Second, because the organic water content affected Rs at
synoptic scales, an equation that modified the Rs response as the
organic layer water content wets and dries due to precipitation
events was used (Eq. (2)). Visual inspection of the residuals from
Eq. (1) in relation to OWC showed maximum positive residuals at
OWC values of 1.5 and 1.2 g H2O g dry weight�1, for the Harvard and
Howland forests, respectively, which were adopted as the values
Table 2
Model parameters for Harvard and Howland Forest and half widths of 95% confidence

weight�1 and Howland was 1.2 g H2O g dry weight�1. FMR2 and V defined in Section 2

Rref Q10 b1

Harvard 2003

Eq. (1) 91.3 (0.08) 4.2 (0.008)

Eq. (2) 97.8 (0.06) 4.2 (0.006) 0.87 (0.0006)

Eq. (3) 97.9 (0.08) 4.2 (0.006) 0.86 (0.0006)

Howland 2005

Eq. (1) 108.7 (0.08) 4.0 (0.007)

Eq. (2) 114.4 (0.09) 4.2 (0.009) 0.41 (0.004)

Eq. (3) 115.6 (0.10) 4.2 (0.008) 0.37 (0.004)
for OWC-opt in Eq. (2). The residuals generally declined at OWC

values above and below OWC-opt, and the shape of this curve was
determined by fitting the parameter b1 in Eq. (2). The model fit
using this OWC function in Eq. (2) increased FMR2 from 0.71
(Eq. (1)) to 0.76 for the Harvard Forest (Table 2). At Howland Forest,
the range of OWC values is smaller and the influence of OWC on
observed Rs is less obvious than at Harvard. Measured OWC rarely
exceeds the optimal water content (OWC = 1.2 g H2O g soil�1) at
Howland Forest, and the addition of OWC to the model only slightly
improved model fit (Table 2). The model also fails to capture the
effects of wetting events on Rs at Howland (Fig. 9b) as well as it
does for Harvard (Fig. 9a). We speculate that the DC-half bridges
used to estimate OWC may not reflect variation in water content of
the predominantly spruce and hemlock litter at Howland Forest as
well as in the predominantly hardwood litter layer at Harvard
Forest. The needle litter may dry and re-wet more abruptly than do
the basswood pieces used in the DC-half bridges. For each forest,
wetting and drying of the litter layer probably has a dominant
effect on Rmicro (Borken et al., 2006; Cisneros-Dozal et al., 2006).

Third, a sine wave function was used to amplify the diel trend in
Rs beyond that predicted from half hourly soil temperature alone
(Eq. (1)). We found that the daily amplitude of Rs was correlated
with mean daily soil temperature:

Da ¼ 10:7expð0:15TsÞ; R2 ¼ 0:51; p<0:0001

where Da is daily amplitude (mg C m�2 h�1), Ts mean daily soil
temperature (8C)

In other words, as the daily flux of Rs increases with soil
temperature, the diel amplitude of Rs also increases, but this
increase in amplitude exceeds that which would be expected by
the diel amplitude of hourly soil temperature. Hence, an additional
predictor of daily amplitude, mean daily soil temperature (Ts) is
needed, as shown in Eq. (3).

Adding this diel response, (Eq. (3)) decreases the cost function
V, and improved the model, more so for Howland than for Harvard
(Table 2, Fig. 9). Some diel variation in Rs is predicted by variation
in soil temperature in Eq. (1), but as discussed above, hourly
variation in soil temperature alone under-predicts the diel
variation. The large diel variations in Rs and the extremely high
diel Q10 response of Rs to soil temperature (Fig. 4) during the warm
season cannot be explained by a reasonable response to diel
variation in soil temperature alone, suggesting a link to other
process, such as allocation and lagged transport of photosynthate
to roots at diel time scales. Seasonal variation in mean daily
temperature is probably serving as a proxy in this case for seasonal
variation in canopy processes, including mean daily NPP and
subsequent belowground C allocation, thus offering a viable
explanation that links canopy and belowground processes.
Interestingly, the unusually high Q10 values derived for diel
variation in Rs were not found when the canopy was absent during
the leafless season of the deciduous Harvard Forest (Fig. 4).

We investigated correlations between metrics of photosynthe-
tically active radiation (PAR) and the seasonal trend of variation in
intervals presented in (italics). Optimal OWC for Harvard was set to 1.5 g H2O g dry

.7.

a c V FMR2

13,905 0.71

11,490 0.76

0.32 (0.008) 2.66 (0.02) 11,396 0.76

17,047 0.69

16,530 0.70

0.79 (0.008) 2.47 (0.01) 16,036 0.71



Fig. 9. Sections of observed Rs with model results for (a) Harvard, (b) Howland. Black line observed soil respiration, dark light gray line Eq. (1), light gray line Eq. (2), red line

Eq. (3), and dashed black line OWC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.).
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daily amplitude of Rs, but variation in PAR is also confounded with
incidence of precipitation events. After filtering out Rs data affected
by precipitation, a significant seasonal correlation between PAR
and daily amplitude of Rs was not present in the remaining (n = 26
for Harvard Forest and n = 25 days for Howland Forest) dataset. The
same problem complicated the use of eddy-covariance measure-
ments of net ecosystem exchange (NEE) or gross primary
productivity (GPP) as predictors of daily amplitude of Rs. Using
GPP has the additional problem that it is a derived term that
requires estimates of ecosystem respiration, of which Rs is typically
about 60–80%. Hence, a correlation between GPP and Rs would only
serve to reinforce that Rs is a large part of estimated GPP and could
not be used to deduce that variation in estimated GPP drives
variation in Rs, even though that may indeed be the case if GPP
could be measured independently.

4. Conclusions and future directions

A single soil temperature function has often been used as a
predictor of Rs at both diel and seasonal timescales. However, diel
variation in Rs exceeded predicted values based on a seasonal soil
temperature function. Some of the diel variation observed in Rs

may be related to diel variation in aboveground processes, possibly
affecting the Rroot contribution to Rs. It is difficult to measure
changes in substrate supply, particularly at a diel time scale.
However these and other results suggest that substrate supply
must be addressed at multiple time scales. A key gap in our
knowledge is the time required and the processes involved in
allocation and transport of photosynthate belowground, which
affects the timing and magnitude of variation of root respiration.

Another complex process is the response of Rs to changes in soil
water content. This response has been found to covary with
temperature, duration and magnitude of precipitation, and with
pre-wet-up conditions, something not completely addressed in the
statistical models presented here or elsewhere. Hence both the
antecedent conditions and the magnitude of the event are
important.

In this study, we deconstructed Rs into differing temporal
frequencies and then related Rs responses at each temporal
frequency to the environmental variables that covaried with Rs at
that scale of interest. However, these multiple factors are difficult
to include in purely statistical models. Our statistical approach
provides insight into the processes most important at each
temporal scale, but future progress in modeling Rs will need to
represent mechanisms for the processes that statistical models
identify as important at each appropriate temporal scale.
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